If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2-36t+45=0
a = 6; b = -36; c = +45;
Δ = b2-4ac
Δ = -362-4·6·45
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-6\sqrt{6}}{2*6}=\frac{36-6\sqrt{6}}{12} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+6\sqrt{6}}{2*6}=\frac{36+6\sqrt{6}}{12} $
| 2/5t+21=5 | | -4x-3=-51 | | 2(v-1)(-1v+6)=0 | | 2(v-1)(-v+6)=0 | | 127=(2x | | 3x-3+6x+12=180 | | -2x-8=4x+33 | | 3x-5(x-2)=-9+5x-+5 | | 5(9-x)+8=16+2(2x-4) | | 9s-4=50 | | 7x+12=4x-1 | | 10x-27=423 | | 4z+4=5z-9 | | 1/4(x+4)=1/7(3x+5) | | 5-3n=65 | | 4(x+6)-24=-3(x-5)+20 | | x-9-7=-6x+1 | | 3.14*4*2=v | | 1x+0.13x=226 | | (1/4)^3x=128 | | 5x+4-3x=10x+12 | | 7x-9=7x+8 | | 2x=2x+3(-5+x) | | -3+5x=2x1-3 | | 2(w-6)=7w+8 | | -3+5x=2x13 | | 22/11=r/1÷ | | -3+7x=-24 | | x+x2=333 | | 2(x+7)+9=9 | | 10x+2x=3x+27 | | 4u+9=57 |